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What this talk is about

N-Higgs-doublet models, NHDM, is a broad and conservative class of bSM
models in which we just assume that Higgs doublets come in
“generations”: φi , i = 1, . . . ,N.

Motivations: rich scalar sector, insights into the flavor puzzle, novel forms
of CP-violation, astroparticle effects, etc. → O(103) works based on
various forms of NHDM.
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What this talk is about

I am not going to:

promote any specific bSM model based on several Higgs doublets,

or give detailed predictions for the LHC or astroparticle observables.

My interest is to systematically investigate the entire class of models, at
least in the scalar sector.

I will focus on 3HDM and will explore what’s possible, symmetry-wise, in
the scalar sector of 3HDM.

Even if you are not familiar with this subject, no problem: take it as an
example of somewhat unusual application of the group theory to physics.
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Scalar sector in NHDM

SM, 2 parameters: V = −µ2(φ†φ) + λ(φ†φ)2.

2HDM, 14 parameters:

V = −1

2

[
m2

11(φ†1φ1) + m2
22(φ†2φ2) + m2

12(φ†1φ2) + m2 ∗
12 (φ†2φ1)

]
+
λ1
2

(φ†1φ1)2 +
λ2
2

(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2) + λ4(φ†1φ2)(φ†2φ1)

+

{[
1

2
λ5(φ†1φ2) + λ6(φ†1φ1) + λ7(φ†2φ2)

]
(φ†1φ2) + h.c.

}
.

NHDM, N2(N2 + 3)/2 parameters:

V = Yab(φ†aφb) + Zabcd(φ†aφb)(φ†cφd) ,

No chance to qualitatively understand the phase diagram by simply scanning the
entire parameter space!
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Symmetries in multi-Higgs models

A good way to see structures in multi-parametric models is to understand
possible symmetry classes and track their consequences.

LbSM → impose symmetries → get structures → study phenomenological
consequences (CP, FCNC, astroparticle, flavour, etc).

Classic papers on 3HDM with symmetries: CP-violating Z2 × Z2 [Weinberg,
1979], CP-conserving Z2 × Z2 [Branco, 1980], S3 [Pakvasa, Sugawara,
1978], A4 [Ma, Rajasekaran, 2001], ∆(27) [Branco, Gerard, Grimus, 1984],
+ many dozens of more recent works.

Systematic exploration of all symmetry-related issues in a model with N
doublets is a challenging but rewarding undertaking. Understanding how
symmetries work in bSM models will support the mainstream model-building
activity.
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Symmetries in multi-Higgs models

I will focus on discrete symmetries in the scalar sector of 3HDM, with some
discussion of NHDM.

Both Higgs-family transformations φi 7→ Uijφj and generalized-CP (GCP)
transformations φi 7→ Uijφ

∗
j transformations will be considered.

Main questions:

Which Higgs-family symmetry groups GHF can the scalar sector have?

What are the CP-consequences of each GHF ?

How do these symmetries break upon minimization of the potential?
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Technical remarks

Since we work only with the scalar sector, unitary transformations are
considered up to overall rephasing:
Uij ∈ U(N)/U(1) ' SU(N)/ZN = PSU(N).

The most important example is ∆(27) ∈ U(3) in 3HDM,

∆(27) = 〈a3, b〉 , a3 =

 1 0 0
0 ω 0
0 0 ω2

 , b =

 0 1 0
0 0 1
1 0 0

 ,

becomes ∆(27)/Z3 ' Z3 × Z3 ∈ PSU(3).

Important difference between imposing and deriving symmetry group:
below, G -symmetric 3HDM means that V is not only G -invariant,
but also does not have any other symmetry beyond G .

G represents the full symmetry content of the model.
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Finding discrete symmetries

in the 3HDM scalar sector
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“Abelian LEGO” strategy

Step 1: find all possible discrete abelian groups Ai ; any
allowed G can have only those abelian subgroups. These
are “LEGO bricks” with which we will build a non-abelian
model.

Step 2: build G by combining various Ai but avoid
producing abelian groups not in the list!

Step 3: for each G built, check that it fits PSU(3)
and that it does not automatically produce any
higher symmetry.
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Step 1: Abelian symmetry groups

We developed a systematic procedure (Smith normal form technique)
which gives all possible rephasing symmetry groups for any bSM model
with any set of complex fields.

In the specific case of the 3HDM scalar sector, we include one extra
abelian subgroup of PSU(3) which is not rephasing group. The final list is

Z2, Z3, Z4, Z2 × Z2, Z3 × Z3 .

It is complete: imposing any other finite abelian symmetry group on the
potential unavoidably leads to continuous symmetry group.

Note that the orders of these groups divide only two primes: 2 and 3.
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Step 2: Group-theoretic part

Any finite (non-abelian) G must contain only these abelian subgroups,

⇒ by Cauchy’s theorem, its order |G | = 2a3b,

⇒ by Burnside’s paqb theorem, G contains a normal abelian
subgroup A

g−1Ag = A ∀g ∈ G .

At this point, we cannot yet restrict G/A.

With further group theory, we proved a stronger statement:
G contains a normal maximal abelian subgroup, which has remarkable
consequences.
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Consequences of a normal maximal abelian subgroup

If A is normal in G , then g−1Ag = A, so g acts on elements of A by
some group-preserving permutation (automorphism of A).

So, for every g ∈ G we get an automorphism ∈ Aut(A). We get a
map f : G → Aut(A).

Ker f = CG (A) (centralizer of A in G ): contains all elements g which
act trivially on A: g−1ag = a for all a ∈ A.

If A is maximal abelian, then such g must belong to A itself. Then A
is self-centralizing, Ker f = A:

G/Ker f = G/A ⊆ Aut(A),

and G can be constructed as an extension of A by a subgroup of
Aut(A).
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Automorphism groups

G = extension of A by P , P ⊆ Aut(A) .

Overview of possibilities:

A Aut(A) “usable” subgroups P

Z2 {1} —
Z3 Z2 Z2

Z4 Z2 Z2

Z2 × Z2 GL2(2) ' S3 Z2, Z3, S3
Z3 × Z3 GL2(3) Z2, Z4
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Step 3: Constructing G by extensions

Example: A = Z4. Then Aut(Z4) = Z2, so G is extension of Z4 by Z2.

There are several possibilities.
(1) extensions which lead to larger abelian groups (Z8, Z4 × Z2) are immediately
excluded;

(2) dihedral group D4, the symmetry group of the square.

D4 = 〈a, b〉 with conditions a4 = 1, b2 = 1, ab = ba3 .

If a = diag(i ,−i , 1), then

b =

 0 e iδ 0
e−iδ 0 0

0 0 −1

 with arbitrary δ.

Finally, we construct a generic D4-invariant potential and check that it has no
other symmetry.
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Step 3: Constructing G by extensions

(3) quaternion group Q4:

Q4 = 〈a, b〉 with conditions a4 = 1, b2 = a2, ab = ba3 .

If a = diag(i ,−i , 1), then

b(Q4) =

 0 e iδ 0
−e−iδ 0 0

0 0 1

 .

We construct the Q4-invariant potential and find that it is unavoidably
invariant under a U(1) group.

We conclude that Q4 alone cannot be a symmetry group of potential.
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3HDM scalar symmetries

Discrete non-abelian GHF ’s allowed in the 3HDM scalar sector:

GHF = S3 , D4 , A4 , S4 , ∆(54)/Z3 , Σ(36) .

This list is complete: trying to impose any other finite Higgs-family
symmetry group on the 3HDM potential will unavoidably lead to a
continuous symmetry.

Igor Ivanov (UGent) Symmetries and breaking in 3HDM SHEP, 7/11/2014 16/27



Introduction Discrete symmetries in 3HDM Breaking symmetries in 3HDM Conclusions

Checking CP properties

Explicitly CP-violating 3HDM:

G = Z2, Z3, Z2 × Z2 , S3 , ∆(54)/Z3 .

Explicitly CP-conserving 3HDM
(∗ indicates a group generated by a GCP transformation):

G = Z∗2 , Z2 × Z∗2 , Z∗4 , Z3 o Z∗2 , Z4 o Z∗2 , Z2 × Z2 × Z∗2 ,
S3 × Z∗2 , D4 × Z∗2 , A4 o Z∗2 , S4 × Z∗2 ,
(∆(54)/Z3) o Z∗2 , Σ(36)× Z∗2 .

Unlike 2HDM, GHF does not always lead to explicit CP conservation!
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Breaking discrete symmetries
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Symmetry breaking patterns in NHDM

Consider NHDM with scalar symmetry group G . After EWSB, we get a neutral
vacuum with a certain vev alignment 〈φ0i 〉 = vie

iξi/
√

2 invariant under a residual
symmetry group Gv ⊆ G .

There situations are possible:

symmetry is conserved: Gv = G ;

symmetry is partially broken: {e} ⊂ Gv ⊂ G ;

symmetry is completely broken: Gv = {e}.

The goal: for each G , establish its symmetry breaking patterns.

Phenomenology depends a lot on how much of the original symmetry is broken!

Quark sector: NHDM with symmetry group G can lead to viable quark masses

and CKM only if G is broken completely in the space of “active” doublets

[Leurer, Nir, Seiberg, 1993; Gonzalez Felipe, Ivanov, Nishi, Serodio, Silva, 2014].
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Minimization of 3HDM potentials

Some remarks:

For small groups G lots of free parameters make any symmetry breaking
pattern possible.

Groups such as Z3 o Z∗2 and Z4 o Z∗2 have very few phase-sensitive terms,
and it helps to derive conclusions on symmetry breaking.

For example, Z4 oZ∗2-symmetric 3HDM is V = V0 + Vph, where V0 depends
only on |φi |2 and

Vph = λ(φ†2φ1)(φ†3φ1) + λ′(φ†3φ2)2 + h.c .

with real λ, λ′. It is symmetric under a4 = diag(1, i ,−i) and CP.
Parametrizing vevs as (v1, v2e

iξ2 , v3e
iξ3) and differentiating V , one gets

rigid phases such as ξ2 = −ξ3 = π/4. As a result, the full breaking of
Z4 o Z∗2 is impossible.
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Minimization of 3HDM potentials

For large symmetry groups, the potential has trivial quadratic part and very few
terms in the quartic part. The global minimum can be found much more
efficiently with a geometric method rather than the traditional sequence [Degee,
Ivanov, Keus, 2013].

The main idea is to rewrite the G -symmetric potential as a linear function of
certain real variables:

V = −1

2
m2v2 +

1

4
v4 (Λ0 + Λ1x1 + Λ2x2 + · · ·+ Λkxk) .

Variables xi do not depend on v ; they reflect the relative structures in the vev
alignment, and satisfy certain inequalities. Finding these inequalities defines the
orbit space in the space of all xi .

Once the shape of this orbit space is constructed, minimization of V becomes a
trivial geometric exercise and can be done for all possible values of free
parameters.
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parameters.
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Minimization of the “∆(27)” 3HDM

To illustrate this method, consider “CP-violating ∆(27)” 3HDM (with the true
symmetry group ∆(54)/Z3):

V1 = −m2
[
φ†1φ1 + φ†2φ2 + φ†3φ3

]
+ λ0

[
φ†1φ1 + φ†2φ2 + φ†3φ3

]2
+
λ1

3

[
(φ†1φ1)

2 + (φ†2φ2)
2 + (φ†3φ3)

2 − (φ†1φ1)(φ
†
2φ2)− (φ†2φ2)(φ

†
3φ3)− (φ†3φ3)(φ

†
1φ1)

]
+λ2

[
|φ†1φ2|

2 + |φ†2φ3|
2 + |φ†3φ1|

2
]

+
(
λ3

[
(φ†1φ2)(φ

†
1φ3) + (φ†2φ3)(φ

†
2φ1) + (φ†3φ1)(φ

†
3φ2)

]
+ h.c.

)
,

which can be cast in the form

V1 = −1

2
m2v2 +

1

4
v4 (Λ0 + Λ1x + Λ′1x

′ + Λ2y + Λ′2y
′) ,

with appropriately defined x , y , x ′, y ′. With some algebra, one finds that

x = 1 , 0 ≤ y ≤ x ′ ≤ 1 , |y ′| ≤ y .
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Minimization of the “∆(27)” 3HDM

These conditions define a tetrahedron in the
(x ′, y , y ′)-space. We need to minimize a linear function
on the orbit space which lies inside this tetrahedron
(but does not fill it completely).

The key observation: the four vertices belong to the
orbit space → the global minimum can only be at those
points.

y'

y

x'

1

1

A

A'

B C

Up to cyclic permutations,

A : (ω, 1, 1) , A′ : (ω2, 1, 1) , B : (1, 0, 0) ,

and
C : (1, 1, 1) , (1, ω, ω2) , (1, ω2, ω) .

Finding explicit conditions on parameters Λ is straightforward. No other vev can
be the global minimum of this potential for any values of Λ’s.
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Minimization of the “∆(27)” 3HDM

Passing to larger groups is straightforward: just collapse the orbit space on
the plane y ′ = 0, for “CP-conserving ∆(27)”, and further on the axis y ,
for Σ(36).

In all three cases, the global minimum can only reside at these points. In
the CP-conserving case, points A and A′ realize the geometric-CP
violation [Branco, Gerard, Grimus, 1984]. Remarkably, the same geometric
phase persists even for explicitly CP-violating!

Since we now have all possible vev alignments, we can proceed with
symmetry breaking patterns at each minimum.

Igor Ivanov (UGent) Symmetries and breaking in 3HDM SHEP, 7/11/2014 23/27



Introduction Discrete symmetries in 3HDM Breaking symmetries in 3HDM Conclusions

Symmetry breaking in 3HDM

Results on strongest and weakest breaking of discrete symmetries in
3HDM, as well as on spontaneous CP-violation.

group |G | |Gv |min |Gv |max sCPv possible?

abelian 2, 3, 4, 8 1 |G | yes
Z3 o Z∗2 6 1 6 yes

S3 6 1 6 —
Z4 o Z∗2 8 2 8 no
S3 × Z∗2 12 2 12 yes
D4 × Z∗2 16 2 16 no
A4 o Z∗2 24 4 8 no
S4 × Z∗2 48 6 16 no

CP-violating ∆(27) 18 6 6 —
CP-conserving ∆(27) 36 6 12 yes

Σ(36) 72 12 12 no
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Symmetry breaking in 3HDM

Spontaneous CP-violation is possible only for those Higgs-family groups
GHF , for which there exists an explicitly CP-violating model. If GHF forbids
explicit CP violation, it also forbids spontaneous CP-violation. Explicit and
spontaneous CP violations come in pairs.

When we break a discrete symmetry group, we have several degenerate
minima. Usual expectation: all minima lie on a single G -orbit: one can link
any pair of minima by a broken symmetry ∈ G . Then, the number of
degenerate minima is equal to the length of the orbit

` = |G |/|Gv | .

In one case, this expectation breaks: G = A4 o Z∗2 , |G | = 24, breaks at
(±1, ω, ω2) to Gv = Z3 o Z∗2 , |Gv | = 6, producing eight minima lying on
two disjoint orbits.

Unlike 2HDM, minima with different symmetry breaking can coexist in
3HDM and even be degenerate.
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Towards NHDM result: a possible line of attack

What prevents sufficiently large discrete groups from complete breaking? There
must exist an upper bound nmax on the number of minima of the NHDM
potential. Explicit calculations show that nmax = 2 for 2HDM and nmax = 8 for
3HDM. Therefore, groups with |G | > nmax cannot break completely. The difficult
question is to actually find nmax for general N.

When working in the space on bilinears ra = φ†i λ
a
ijφj , minimization of the NHDM

potential can be cast in purely geometric terms. Search for the global minimum
= search for contact points between two algebraic manifolds, the potential V and
the orbit space.

If two algebraic manifolds in Rk of degrees m1 and m2 intersect, there must exist
an upper bound on the number of connected components. For planar curves, it is
m1m2 (Bezout’s theorem); we just need its analog for higher k.

Note that nmax depends on the algebraic order of the potential → G -symmetric

higher-order terms might lead to stronger symmetry breaking than

quadratic+quartic.
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Conclusions

We investigated in full detail discrete symmetries and their breaking
in 3HDM. All allowed symmetry groups are found, and for each group
all symmetry breaking patterns are established. Interplay between
Higgs-family symmetries and CP-violation is investigated.

This study serves both as an input to specific 3HDM models and,
with the peculiar regularities we observed, as a step towards general
understanding of discrete symmetry breaking in the scalar sector of
NHDM.
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